INTERNAL ASSESSMENT ## SCHOOL OF AERONAUTICS, NEEMRANA LIST OF SEMINAR TOPICS FOR SEMINAR CLASSES (BATCH 1) __ Report must be submitted in spiral binding with C.D. | S No. | Reg.No. | Name of the Student | Topic | Sub- topics | |-------|---------|---------------------|------------------------|--| | 1. | 423 | Vicky Kr. Singh | Role of DGCA – Airport | Methodology followed | | | | | Management | by ATC & DGCA | | | | | | Management of | | | | | | Bilaterals- Economic | | | A | | | regulations | | | | | | Various Airport Services | | | - | | | Rules & Regulation of | | | | | | DGCA | | | | | | Safety & Maintenance of | | | | | | Airport | | | | | 2 | Human & Resource | | | | | | development | | | | | | Airport Development | | | | | | Fees | | 2. | 424 | Jaspreet Singh | Airport Management | History of Aviation | | 2. | 424 | Jaspieet Siligii | All port Wallagement | New Airport | | | | | | development plans | | E. | | =- | | Airport planning | | | | - | | Comparison of Global & | | | | | | Indian Aviation | | | | | | management | | 2 | 425 | Manager Singh | Aircraft Performance | Airplane performance in | | 3. | 425 | Manpreet Singh | All Craft Performance | steady flight | | | | | | | | | | | | | | | | | | Power requiredPower available | | | | | | 0 00 000 000 000 000 000 | | | | , | | In Accelerated flight | | | | | | Take off & landing | | | | | | Steady climb & descent | | 4. | 426 | Raghuvendra Kumar | Wind Tunnel | Introduction | | | | - | | Types of wind tunnel | | | | | | Calibration process | | | | | | Experimental parameters | | | | | | Behavior of flow | | | | | | Error & losses | | | | | | Application in different | | | | | | areas | | | 1 | | | Future research & | | | | | | planning | | 5. | 430 | Chanakya Mishra | Fuselage Structure | Introduction | | ٦. | 450 | Chanakya Wilsina | . 330.000 01.0000.0 | | | | T | | | | |-----|-----|-------------------|-------------------------------|---| | | | a a | | Classification of fuselage | | | | | | Semi monocoque | | | | ÷ | | Monocoque | | | | | | Truss type | | | | | | Component of fuselage | | _ | 424 | | | structure | | 6. | 434 | ShubhashishMondal | CAD/CAM (Use in | Introduction | | | | 90/2 | Automation) | Software working on | | | | 28/3 | 7 | it(CATIA, AutoCAD, | | | | | | ANSYS) | | | | | | Importance | | | | | | Used in automation | | | | | | advantages | | 7. | 441 | ShivamVerma | Heat treatment of metals | Basic principles | | | | 28/3 | | Types of heat treatment | | | | 1 | | Heat treatment of Plain | | | | | | carbon steel | | | | | | Heat treatment of Alloy | | | | | | steel | | | | | | Heat treatment of Cast | | | | | | iron | | 2 | | | | Heat treatment of Non | | | | | | ferrous metals | | 8. | 444 | Sophia Sharma | Fly by Wire | Introduction | | | a | 28/3 | | History | | | | | A | Basic operation | | | | | | Types | | | | | | Application | | | | | | Advantages | | | | * | | Further Development | | 9. | 449 | Navjot Joshi | Wind Tunnel | Introduction | | | | 29/3 | | Types of wind tunnel | | | | | | Calibration process | | | | | | Experimental parameters | | | | | | Behavior of flow | | | | | | Error & losses | | | | | ~ | Application in different | | | | | | areas | | | | | × | Future research & | | | | | | planning | | 10. | 451 | SahilDhiman/ | External lighting | Navigation light | | ¥ | | 29/3 | | Anticollision light | | | | / | | Landing light taxi light | | | | | | Ice inspection lights | | 11. | 456 | Vibha galy | Aircraft Structure (Beams) | | | | | Vibha 29/3 | , arciait structure (bearits) | 51 PHORES N. 20 SC | | | | | | Types of fuselage | | | | | * | Contribution on fuselage Modern fuselage
structure Beam Fixed & continuous
beam analysis Beam contribution on | |-----|-----|--------------------|--|--| | 12. | 459 | AbhishekRai 30/3 | Cabin entertainment | A/C fuselage Flight display system Passenger moving maps WIFI LED monitors Ipod docking station DVD players Inflight games | | 13. | 464 | Farooq Ahmad Bhat | Advanced Propulsion
Systems | Ram/ SCRAM Jets Ionic propulsion Electric propulsion Hybrid engines Pre-cooled engines Latest technologies in propulsion systems | | 14. | 467 | PranavPramodKamble | Mounding Process | Compression moulding Transfer mouding Injection moulding Extrusion moulding Blow moulding Slush moulding Ingredient of moulding components | | 15. | 468 | Vinay Kumar 31/3 | | п | | 16. | 473 | Raushan Kumar | Aircraft structure
(Fuselage and wing
structure) | Introduction History on fuse & wing New design and concept Types of fuselage and wing Application of diff. fuselage and wing | | 17. | 474 | PankajBishnoi | Rocket Propulsion | Solid propellent Liquid propellent Hybrid propellent Grain Design Electric rocket Multi stage rocket | | 18. | 475 | Manu Raj | Battery Installation | Battery compartmentBattery installationVentating system | | | | | | Operation of batteries | |-----|-----|--|---|--| | 19. | 483 | Mayank Mishra | Heat Transfer | Heat transfer processConduction | | | - | | | Convection | | | | | | Radiation | | | | | | Governing equations of | | | | | | each process | | | | | | Parameters influencing | | | | | | these process | | 20. | 485 | ArushiChangia | Auxiliary system of | Auxiliary system | | | | 1/4 | Aircrafts | Various types | | | | / / | * | Components & operation | | | | | | of air conditioning | | | | | | system | | | | | | Pressurization system | | | | | | Oxygen system | | | | | | Deicing & Icing system | | 24 | 407 | | | Fire protection system | | 21. | 487 | AshishVerma | Auxiliary power unit | Ground power unit | | | | 1/9 | | Their operation and | | | - 1 | | | limitation | | | | | | Application | | 22. | 490 | Rahul Agarwal | Avionics Instruments | Instrument landing | | | | 4/4 | | system | | | | , , | | Tactical Air Navigation | | | | - | 41 | system | | | - | | | Traffic Alert | | | | | ψ. | Avoidance & Collision | | | | | | system | | | | | | Distance Measuring | | 23. | 493 | Bipin Kr. Yadav | Cas Tumbina / Camphustian | Equipments | | 25. | 433 | Bipili Kr. Yadav | Gas Turbine (Combustion process & design) | Introduction to | | | | 4/4 | process & design) | Combustion | | | | / | | Why Combustion | | | | | | required • Efficiency of Combustion | | | | at the second se | | Condition of flame out | | | | | | Condition of flame out Combustion chamber | | | | | | Design of Combustion | | | | | | chamber | | | | N . | | Error occurs | | | | | | Material required | | 24. | 497 | AbhishekGilhotra -/ | Circuit protection | Fuses (their materials) | | | | Abilistiekdilliotra 5/4 | | Current limits | | | | 1 | 1 | Circuit breakers | Ĺ | | | | | Overveltage protection | |-----|-----|-----------------------|--|---| | | | | | Over voltage protection Under voltage protection Over excited & under excited protection Diffferent current protection Merz price protection system | | 25. | 498 | AradhanaMathur 5/4 | Antenna (Avionics) | Electro magnetic waves Basic definition Uses & application Types of Antenna Working of Antenna Early history Use of Antenna in
Aircrafts | | 26. | 501 | Suryapratap Singh 5/4 | Aircraft Major Inspection | Introduction Importance of Inspection Different types of Inspection Major & Minor damage Damage tolerance Major & Minor defect Defect reporting, rectification & investigation Aircraft Rigging Symmetry Checks | | 27. | 502 | AbhilashaAwasthi 6/4 | Fluid Mechanics | Bernouli's Theorem Application of Venturimeter Application of Orifices meter Application of Pilot tube | | 28. | 504 | Hitesh Kr. Tak | Aircraft performance in Accelerated flight | Take off Landing Jet assisted take off V-n diagram Turning flight performance Range & endurance Steady climb & descent | | 29. | 506 | KomalTomar 6/4 | Wind Tunnel | Introduction of wind tunnel Wind tunnel design Types of wind tunnel | | | | | I | |-----------------------|-----------------|-----------------------|--| | | | | Testing inside the wind tunnel | | | | | Parameter affecting wind | | | | | tunnel | | | | | Flow visualization in | | | | | wind tunnel | | | | | Wind tunnel balances | | 30. 507 DivyaChar | uhan / Aircr | aft Materials | Aluminium& its alloys | | | 7/4 | | Types & its application | | | / | | Properties | | | 1 | : | Casting | | 31. 509 Deepak Ya | ada T | | Heat treatment process | | 31. 509 Deepak Ya | adav | sformer & Rectifiers | Their principle | | | 1 | x . | Construction of volt | | | Fly | | transformer | | | / ' | | Circuit connectionCurrent transformer | | | | | Auto transformer | | ia . | | | Transformer efficiency | | | | | and rating | | 32. 513 UmangTya | agi AC Po | ower Generation | Principle, alternators, | | | J. | | principle of Aircraft | | | 7/4 | | D.C. Generator | | | · · | u u | Elimination of DC ripple | | | | | Residual Magnetism | | | | | Characteristics of DC | | | | | Generator | | | | | Armature ckt and | | 33. 518 Ravvahars | haVardhan Adva | 16. 41.6 | armature reaction | | 33. 318 Ravvanars | navardnan Adva | nced future Aircrafts | Advancement in | | | | · · | materials | | | 8/9 | 7 | Advancement in | | | , | | structureAdvancement in Avionics | | | | > | Advancement in Avionics | | | | | Propulsion | | | | | Advancement in Travel | | | | | • Drones | | | | | SCRAM/RAM Jet | | | | | Space travel | | | | , | Micro air vehicles | | | | | Weapons (Missiles, | | | ± ± | | Guided, Ballistic) | | 24 55 | | | Artificial Intelligence | | 34. 521 Jeetendra | Singh 8/4 Desig | ning software(CATIA) | Introduction of CATIA | | T I | 1 ' | | Area of use | | | | | | 7 | |-----|-----|-------------------|---------------------------|--| | | | | | Basic modeling in CATIA Various packages in
CATIA | | | | | | Complex design in CATIA | | 35. | 527 | NiteeshBhardwaj , | Cascade system in vapor | Meaning | | | | 8/4 | compression | Requirement | | | | 8/7 | | Description and | | | | _ | | examples | | | | * | · | Application | | 36. | 528 | Chandan Kumar | Rapid prototype | Introduction | | | | 15/4 | | Substractive processes | | | | 15/1 | | Additive process | | | | - | | Virtual prototyping | | | | | | Applications | | 37. | 529 | Hari Haran T. | Vortex tube refrigeration | Meaning | | | | 15/4 | * | Requirement | | | | / | | Description and example | | | | I | , a | Applications | | 38. | 530 | Linu S Murali | Multistage vapor | Complete descriptions | | | - | 15/4 | compression and | and aspects | | | | / ' | expansion | Intercooling and | | | | | | expansion process | | | , | , | | Various types of such | | | | | | arrangements | | 39. | 532 | GobindRai Singh | Instrument Landing System | Working & Application | | | | 15/4 | | Categories | | | | / ' | a . | Ground Installation | | | | | | Airborne installation | | | | | | Equipments required | | | | | <u> </u> | • Indications | | 40. | 533 | Digpriya | Aerodyanmics Drags | Drag (Introduction) | | | | V | | Aerodynamics forces | | | | ¥i | | Types of Drags | | | | | | Lift dependent Drag | | | | | | Lift Independent Drag | | | | | | Wave Drag | | | | | | Effect of Drag on Aircraft | | | | | | Minimization of Drag | | 41. | 534 | Tiny | Shock Waves | Prandtlquation | | | | 18/4 | | Rankine – Hugonoit | | | | / | | relation | | | | | | Normal Shock waves Dilet statis tubs | | | | | | Pilot static tube | | | | | | Flow past convex corners Obligue Shock wayses | | | , | | | Oblique Shock waves | | | | | | Hodograph & pressure | | | | 1 | | turning angles | |-----|-----|--------------------|--|---| | 42. | 537 | SafwanulHaque 18/4 | | | | 43. | 538 | Dikshant Jain | Materials of construction for cryogenic use | Properties of such materials Example of such material Pros and cons of certain such materials in cryogenic construction application | | 44. | 540 | RajendraDhakkal | Cryogenics | History and applicationMeaningCurrent application | | 45. | 541 | SouravSaini | Airplane Performance in
Steady & level flight | Equations of Motion in A/C Variation of Drag with flights Power required Power available Minimum diag& min. power condition Gliding & Climbing | | 46. | 542 | SouravSuman | Thermo Dynamics | Otto cycle Carnot cycle Atkinson cycle Rankine cycle Brayton cycle | | 47. | 549 | Ananta Kumar Bhoi | Why the vapor compression cycle | Theoritical refrigeration cycle i.e. carnot cycle Improvements of cornot cycle Air as a refrigerant Advantage of vapor compression refrigeration | | 48. | 550 | Dinkar Kumar | Composite Materials | Strength to weight ratio Classification Particular composites Fiberous composites Manaufacturing of composites Short fibre composite Maintenance of composite | | 49. | 553 | Sunny Baghel 20/4 | History of refrigeration | Early requirement of cooling | | χ::0 | - | | | Traditional methods of
refrigeration and air
conditioning | |------|-----|----------------|---|---| | 50. | 554 | AmitabhaGhosh | Storage and handling of cryogens | Need for special methods of storage and handling Various methods Advantage and disadvantages of various mehods | | 51. | 555 | Abhishek Kumar | Dynamic Stability | Dynamic untability modes Directional Divergence Tortional Divergence Spiral Divergence Dutch roll Auto- rotation Spin | | 52. | 557 | Ajay Ramteke | Plates of various shapes | Equation of bending of plates in polar coordinates Circular plates under a linearly varying Circular plates under a concentrated load Circular plates of non uniform thickness coordinates | | 53. | 561 | Amir Khan 20/4 | Maintenance of Airframe and System Design | Oxygen Airconditioning Pressurization Importance Application in Aircraft | | 54. | 562 | ArjooAdhikari | Airport infrastructure & Management | Introduction Airport Planning Terminal planning design & operation Airport operation Airport function Organization structure in an airline Airport Authority of India | | 55. | 696 | S. Ganesh | Laws of Thermodynamics | Zeroth lawFirst lawSecond law | . . | | | | | Carnot law Entropy & Enthalpy Internal energy Kelvin plank & clausius inequality | |-----|-----|--------------------|------------|---| | 56. | 663 | B.S. Jami Debbarma | Atmosphere | International standard atmosphere Geometrical &Geopotential altitude Troposphere & Stratosphere Lapse rate Stability of atmosphere Pressure altitude Different kinds of airspeeds | | 57. | 643 | Rahul Poddar 21/4 | 5 | • | ## LIST OF SEMINAR TOPICS FOR SEMINAR CLASSES (BATCH 2) | S no. | Reg no. | Name of the Student | Nam of the Topic | Sub topics | |-------|---------|-------------------------|-----------------------|---| | 1. | 429 | Abhaykumar , | Electronic emergency | • ELT | | | | 30/3 | equipment requirement | Flight recorder | | | | / | | Voice recorder | | *. | | | | Smoke detector | | 2. | 436 | Subhamjain / Jan | Thermo electric | Meaning | | | | 1 3093 | refrigeration | Requirement | | | | 30/3 | | Description and example | | | | / | | Applications | | 3. | 448 | JugalKishordimri | Fluid Mechanics | Bernouli's Theorem | | | | 1/4 | | Application of Venturi- | | | | '// | | meter | | | | | | Application of Orifices | | | | 1 0 | | meter | | | | , | | Application of Pilot tube | | 4. | 458 | Rajankumarkannaujia 1/4 | Instrument Landing | Working & Application | | - | | 5 | System | Categories Ground Installation Airborne installation Equipments required | |-----|-----|---------------------|---------------------------|---| | | | - | | • Indications | | 5. | 469 | Vikasrangar | Fly by Wire | Introduction | | 5. | 409 | Vikasiangai | Try by write | History | | | | 1/9 | | Basic operation | | | | | | Types | | | | | | Application | | | | , | | Advantages | | | | - | | Further Development | | | 470 | Contatoriore | Thermo Dynamics | Otto cycle | | 6. | 470 | Sadabahmad | Thermo Dynamics | | | | | 1/4 | | Carnot cycle Atkingen gyala | | | | / / | | Atkinson cycle Dankins and a | | | | | | Rankine cycle | | | | | | Brayton cycle | | 7. | 472 | Ashishgupta | Composite Materials | Strength to weight ratio | | | | 1/4 | | Classification | | | | 177 | | Particular composites | | | | 1 | | Fiberous composites | | | | | | Manaufacturing of | | | | | | composites | | | | | | Short fibre composite | | | | | | Maintenance of | | | | | | composite | | 8. | 476 | Gurmilansinghkainth | Materials of construction | Properties of such | | | | .1. | for cryogenic use | materials | | | |)/4 | | Example of such material | | | | / / | | Pros and cons of certain | | | | | | such materials in | | | | · | | cryogenic construction | | | | | | application | | | | | | | | 9. | 477 | Rajatkumar guru | Airport infrastructure & | Introduction | | | | | Management | Airport Planning | | | | 6/9 | | Terminal planning design | | | | / | | & operation | | | | * | , | Airport operation | | | | | | Airport function | | | | | | Organization structure in | | | | | 4 | an airline | | | | | | Airport Authority of India | | 10. | 480 | Krishankumar / | Rocket Propulsion | Solid propellent | | | | 6/4 | | Liquid propellent | | | | 7 | | Hybrid propellent | | | | | | | | | 1 | | | 3 | |-----|-----|----------------------|-------------------------|--| | | | | | Grain Design | | | | | | Electric rocket | | 1.0 | 100 | | | Multi stage rocket | | 11. | 489 | Krishankantsingh R. | Aircraft Performance | Airplane performance in | | | | 6/4 | | steady flight | | | | 7/ | | Equation of motion | | | | ε | | Power required | | | | | | Power available | | | | | | In Accelerated flight | | | | | | Take off & landing | | | | | | Steady climb & descent | | 12. | 499 | Rameshwargurjar , | Aircraft performance in | Take off | | | | 6/4 | Accelerated flight | Landing | | | | 9/1 | | Jet assisted take off | | | | | | V-n diagram | | | | *,, | 8 | Turning flight | | | | | | performance | | | | | | Range & endurance | | | | | | Steady climb & descent | | 13. | 500 | Sonnupeepliwal / | Internal and External | Cockpit lighting | | | | 8/4 | lighting | Integral light | | | | / / | | Pillar and bridge | | | | | | Flood lighting | | | | | - | Electro luminescent | | 14. | 503 | Dayama Deepak mukund | Aerodyanmics Drags | Drag (Introduction) | | | | 1 | , and a second | Aerodynamics forces | | | | 8/4 | | Types of Drags | | | | 6// | | Lift dependent Drag | | | | | | | | ŀ | | | | Lift Independent Drag Ways Drag | | | | | | Wave Drag Fffeet of Drag and Aircraft | | | , | | | Effect of Drag on Aircraft Minimizer 1 | | 15. | 510 | Kapilgupta | AC Power Generation | Minimization of Drag | | | 310 | | Ac rower deficiation | Principle, alternators, | | | | 8/4 | | principle of Aircraft | | | | 6 | , | D.C. Generator | | | | | v. | Elimination of DC ripple | | | Y | | | Residual Magnetism | | | - | | | Characteristics of DC | | | | | | Generator | | | | 5 | | Armature ckt and | | 16. | 511 | Dharampalahawallaa | | armature reaction | | 10. | 211 | Dharampalchoudhary | Antenna (Avionics) | Electro magnetic waves | | | l | 0/4 | | Basic definition | | | | 8/4 | | Uses & application | | 3 | | | | Types of Antenna | | | | | | Working of Antenna | | | | 1 | | Early history | |-----|-----|---------------------|--|---| | | | | | Use of Antenna in | | | | | | Aircrafts | | 17. | 514 | Nand Kishore dhaker | Airplane Performance in
Steady & level flight | Equations of Motion in A/C Variation of Drag with flights Power required | | | | | | Power available Minimum diag& min. power condition Gliding & Climbing | | 18. | 515 | Tulseramgurjar 15/4 | Rapid prototype | Introduction Substractive processes Additive process Virtual prototyping Applications | | 19. | 526 | Sujeetbiswas | Gas Turbine (Combustion process & design) | Introduction to Combustion Why Combustion required Efficiency of Combustion Condition of flame out Combustion chamber Design of Combustion | | | - | | | chamber Error occurs Material required | | 20. | 545 | Rupeshkumar | Airport Management | History of Aviation New Airport development plans Airport planning Comparison of Global & Indian Aviation management | | 21. | 548 | Himanshukhare | CAD/CAM (Use in Automation) | Introduction Software working on it(CATIA, AutoCAD, | | | 4 | | | ANSYS) Importance Used in automation Advantages | | 22. | 551 | Om prakashkumar | Dynamic Stability | Dynamic untability modes Directional Divergence Tortional Divergence | . | 23. | 552 | Ujjawal | 20/4 | Cascade system in vapor compression | Spiral Divergence Dutch roll Auto- rotation Spin Meaning Requirement Description and | |-----|-----|-------------|------|--|--| | | | | | | examples • Application | | 24. | 670 | Rakeshkumar | 20/4 | Maintenance of Airframe
and System Design | Oxygen Airconditioning Pressurization Importance Application in Aircraft | | 25. | 699 | Md. Saboor | 20/y | Heat treatment of metals | Basic principles Types of heat treatment Heat treatment of Plain carbon steel Heat treatment of Alloy steel Heat treatment of Cast | | | | | | | iron Heat treatment of Non ferrous metals |